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Abstract. Recent advances in logistics, transportation and in telecom-
munications offer great opportunities to citizens and organizations in a
globally-connected world, but they also arise a vast number of complex
challenges that decision makers must face. In this context, a popular
optimization problem with practical applications to the design of hub-
and-spoke networks is analyzed: the Uncapacitated Single Allocation p-
Hub Median Problem (USApHMP) where a fixed number of hubs have
unlimited capacity, each non-hub node is allocated to a single hub and the
number of hubs is known in advance. An immune inspired metaheuristic
is proposed to solve the problem in deterministic scenarios. In order to
show its efficiency, a series of computational tests are carried out using
small and large size instances from the Australian Post dataset with node
sizes up to 200. The results contribute to a deeper understanding of the
effectiveness of the employed metaheuristic for solving the USApHMP
in small and large networks.

Keywords: Artificial immune systems · p-Hub Median Problem ·
Metaheuristics · CLONALG

1 Introduction

The design of hub-and-spoke networks addresses decisions about where to allo-
cate or install hubs (facilities), considering customers’ or users’ demands that
must be served, in order to optimize one or more criteria. The “hub” term is
used to refer to schools, factories, warehouses, telecommunication antennas, etc.,
while “customers” refer to neighborhoods, sales units, students, etc. Localiza-
tion problems are combinatorial by nature, since they consist of selecting from
a discrete, finite set of data the best subset that satisfies certain criteria. Many
are highly complex and costly from a computational point of view.

There are many variants of the hub localization problem (HLP) [25]: the
p-hub median problem, the p-hub center problem, the capacitated/uncapaci-
tated hub location problem, and the hub covering problem. Moreover, HLP may
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be classified by the way in which the requested points are assigned or allocated
to hubs. In this sense, they can assume one of the two allocation schemes: (i)
single allocation scheme, where each node must be assigned to exactly one hub
node (i.e., all flows from/to each node go only via an assigned hub); and (ii)
multiple allocation scheme, where nodes are allowed to communicate with more
than one hub. Furthermore, different constraints may arise, including capacity
restrictions on the traffic volume a hub can concentrate. A straightforward ver-
sion of this problem is the uncapacitated single allocation p-hub median problem
(USApHMP), which assumes that the capacity of each hub is virtually unlimited
or, at least, far beyond the expected demand. In these types of configurations, the
hubs serve as connection points between two installations, allowing to replace a
large amount of direct connections between all pairs of nodes, hence, minimizing
the total transportation cost of the network.

Recently, the application of heuristic methods to HLP has received consid-
erable attention by many researchers. On one hand, metaheuristics based on
General Variable Neighborhood Search [15], GRASP [26], Scatter Search [4,21],
Iterated Local Search [3], among others [16,29,31] have been proposed. Further-
more, recent successful approaches using exact methods are [22,23]. On the other
hand, bio-inspired methodologies such as GA have been also proposed in order
to solve other variants of the problem such as the uncapacitated single allocation
hub location problem, in which the number of hubs is not given in advance [13],
or the uncapacitated multiple allocation p-hub median problem, in which one
node can be allocated to more than one hub [24]. Furthermore, the application
of Artificial Immune Systems (AIS) methodology such as Clonal Selection for
solving capacitated HLP and p-hub median problems have been applied [19,20].

Particularly, AIS have been widely adopted for optimization purposes. One
can find different approaches of AIS algorithms for solving problems such as
optimization of distributed generation in distribution systems [7], optimization of
material handling system [18], constrained optimization problems [33], dynamic
constrained optimization [34], reverse logistics [10], design problems of energy
suply networks [32], distributed wireless networks [28], distribution scheduling
problem [27] and many others. The reader is referred to [6] for a recent survey
of the application of AIS in optimization.

Regarding the application of bio-inspired metaheuristics for specifically solv-
ing the USApHMP, just a few articles were found in the literature. In [17], the
authors solved this problem by using two distinct GA approaches. They pre-
sented solutions with the Civil Aeronautic Board (CAB) and Australian Post
(AP) datasets. Likewise, in [14], the authors considered an approach consisting
on the application of Clonal Selection for solving the same problem, however,
there is no experimental results to support this outlook.

By relying on the aforementioned explanations, the CLONALG method is
proposed to solve the USApHMP. In contrast with a standard GA and other bio-
inspired proposals which have been applied to solve other variants of the problem,
immune inspired algorithms such as CLONALG present an intrinsic capacity of
maintaining diversity among the candidate solutions during the execution, which
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can be decisive to increase the probability that the global optimum or a good
local optimum can be reached. Although it is known that there is no particular
global search strategy with superior performance for a wide class of problems,
these arguments support the application of such metaheuristic in the context of
USApHMP.

The rest of the paper is organized as follows: Sect. 2 describes the mathemat-
ical model of the USApHMP. The proposed methodology is presented in Sect. 3.
The experiments and results are provided in Sect. 4. Finally, concluding remarks
on this work are provided in Sect. 5.

2 Formal Problem Description

The USApHMP consists of choosing p nodes from a given network of n nodes as
hubs, while allocating the remaining (n−p) nodes to them, in order to minimize
the total transportation cost over the network. As mentioned before, this problem
differs from other HLPs because the number of p hubs is given beforehand. We
use the integer programming formulation given in [1,17] which, in turn, is based
on the very first model proposed by O’kelly [25] and has been extensively applied
for solving small to large instances of the problem. Accordingly, the following
notation and formulation is given.

Notation:

– N = {1, 2, · · · , n − 1, n}: set of n distinct nodes in the network. Each node
refers to origin/destination (O/D) points or potential hub location;

– Cij : cost per unit flow from each origin node i to destination node j;
– Wij : amount of flow from i to j;

– Xik =

{
1, if non-hub node i is allocated to a hub node k

0, otherwise
– Xkk = 1: implies that the node k is a hub;
– X : cost for collecting flow from the origin non-hub node to its hub;
– τ : cost of transferring the collected flow between the interconnected hubs;
– δ: cost of distributing the flow from the hub to the destination node;

Given the aforementioned notation the problem is formulated as follows:

Minimize:
∑

i,j,k,l∈N

Wij(XCikXik + τCklXikXjl + δCjlXjl) (1a)

Subject to:
n∑

k=1

Xkk = p, (1b)

n∑
k=1

Xik = 1,∀ i ∈ N (1c)

Xik ≤ Xkk ∀ i ∈ N (1d)
Xik ∈ {0, 1} ∀ i ∈ N (1e)
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Equation 1b gives the exact number of hubs to be selected from the node network.
Equation 1c is the single allocation constraint, ensuring that the flow from any
origin non-hub node i is sent through one and only one hub node to which the
node i is allocated. Equation 1d guarantees that a non-hub node is able to be
allocated to only one hub, thus avoiding direct movement between O/D nodes.

3 Methodology

In this section, primarily based on [1], the key principles of AIS and CLONALG
method are derived. AIS are a class of algorithms inspired by the mammalian’s
immune system. In the context of engineering and computing, the application
of the immunological principles of decentralization and diversity maintenance
are often useful in solving problems with large solutions spaces, such as the
USApHMP.

The immune system characteristics have received attention from the research
community in order to design new intelligent frameworks. Properties such as:
automatic recognition of antigen’s characteristics, pattern recognition and memo-
rization capabilities, self-organizing memory, adaptation ability, immune response
adaptation, learning from examples, distributed and parallel data processing, mul-
tilayer structure and generalization capability [11] have been reproduced for solv-
ing optimization problems, like the one of this work, as well as identification of
non-linear systems [2,30] and machine learning related problems [5].

In the context of USApHMP, the cells and their antibodies are analogous
to a candidate solution for the optimization problem posed by 1a. Thus, it is
possible to immunologically simulate such problem, seeking solutions effectively.
With this in mind, an immune-inspired metaheuristic is proposed for solving the
USApHMP: the CLONALG algorithm, a classical technique that emulates the
clonal selection principle for optimization tasks.

3.1 CLONALG Algorithm

Clonal selection algorithms are inspired by the clonal selection theory, which
basically addresses the way the immune system responds to infectious agents.
It is result of the work accomplished by [8], which in turn, served as inspiration
for CLONALG [9], a popular AIS that emulates the cloning and hypermutation
process, key principles of the original theory. The improvement of the candi-
date solutions pool, in CLONALG, follows the steps of all clonal selection-based
algorithm: clone, mutate, select and replace.

The clonal selection theory argues that, when an antigen penetrates the host
body, a selection of lymphocytes capable of recognizing it takes place. Lympho-
cytes with higher antigen reactivity would be selected for clone expansion over
those with lower neutralizing capability. Each clone should have a unique antigen
receiver, i.e. it should not be present in any other. The idea is that only cells capa-
ble of properly recognizing antigens should survive and generate offspring, i.e. the
process promotes a maturation of the immune system response to the infection.
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Algorithm 1. CLONALG(nodes, pHubs, β, ρ, Ninitial, nC, b)
Ab ← random(Ninitial)
while Stop condition is not met do

Solve fit ← affinity(Ab)
C ← clone(Ab, nC, β)
C∗ ← mutate(C, fit, ρ)
Fit′ ← affinity(C∗)
R ← select(C∗, F it′)
Ab ← replace(R, random(b))

end
return Ab

Based on the clonal selection principle, the CLONALG has been proposed
as a method to be applied both in optimization, as presented in this work, and
in machine learning. CLONALG is largely referenced by the study presented in
[9], in which the sensitivity to its parameters and its performance in a set of
test problems were analyzed. Its pseudocode for solving the USApHMP, based
on the description presented in [1], can be found in Algorithm1. The input
parameters are: (i) the number of nodes as well as the number of hubs given by
the problem; (ii) the clonal factor β; (iii) parameter ρ which controls the shape
of the mutation rate; (iv) the size Ninitial of the antibody1 pool Ab; (v) the
number of clones nC; and (vi) the parameter b for selecting the number of new
antibodies that will replace the lowest affinity ones from Ab.

The procedure starts generating a pool of antibodies with fixed size Ninitial.
The authors of [9] proposed that the generation of those antibodies occurs ran-
domly for a greater diversity within the population. In the case of the USApHMP,
every member of Ab represents a solution for the problem, i.e. an allocation
matrix X. First, the given number of p hubs are randomly chosen following
a uniform probability distribution, then, the remaining nodes are allocated to
their nearest hubs. Next, every antibody in Ab is evaluated by the affinity/fitness
function

fAg(Abi), (2)

where Ag represents the antigens, and the fitness is the cost function given
by Eq. 1a. This way, the Ab solutions with lower fitness also have lower cost,
therefore, are the best ones. Following, the amount of clones nC to be generated
for each individual is calculated as defined in Eq. 3:

nC = round(β · Ninitial), (3)

where β is the clonal factor. Then, the affinity maturation process is applied
at an α rate proportional to the affinity obtained from Eq. 2, as defined in the
following equation:
1 Unlike in nature, there is no distinction for the terms antibodies/lymphocytes/cells

in the context of AISs.



Optimization of the p-Hub Median Problem via Artificial Immune Systems 355

Algorithm 2. mutate(Ab, pHubs)
while Stop condition is not met do

select mode pHubs or nodes
if pHubs then

oldHub ← select one hub randomly
newHub ← select one node randomly that is not a hub
replace oldHub with newHub
disconnect all nodes
reconnect all nodes to closest hub

else
node ← select one node randomly
disconnect node from its corresponding hub
connect node to a new randomly selected hub

end

end
return Ab∗

α = ρ · fit, (4)

with ρ being the normalized affinity in [0, 1] of the correspondent antibody. Dif-
ferently from the proposal in [9], originally designed for function maximization,
note that the mutation rate is proportional to their parent’s affinity, i.e., the
greater the affinity (the USApHMP cost), the greater the mutation intensity.

Afterwards, the affinity of every clone is calculated and it is selected the best
one among the clones and their parents to be kept. Finally, the main loop is con-
cluded where the b worse antibodies are replaced with new randomly generated
individuals. The process repeats itself until the stopping criteria is met.

The CLONALG mutation operator is a crucial aspect of the method that
directly affects the diversity of the candidate solutions and the exploration of
the search space. Recall that an antibody represents an allocation matrix of
the hubs and nodes, i.e. the matrix X in Eq. 1a, then Algorithm 2 presents the
pseudo-code for this operator. The procedure selects between pHubs or node
mode based on the mutation rate α. If the procedure pHubs is selected, one of
the Ab hubs is chosen in order to be replaced with another node which becomes a
hub, such node is randomly selected. Then, it reconnects all nodes to their current
closest hub. If the node procedure is selected, instead of randomly choosing a
hub, a node is selected and its current hub is changed and replaced from among
Ab hubs possibilities. By choosing either option, one can expect that candidate
solutions are able to escape out of local minima or explore local regions.

Once the set of clones have been generated, each clone is then mutated and
an affinity-based selection among the clones and their parent ensures that the
solutions generated after the clone step have, on average, higher affinities than
those of the early primary response. It is worth stressing that the mutation
operator follows the restrictions imposed by the problem formulation, seen in
Eq. 1a.
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In general, the performance of AIS can be affected by variations on its param-
eters. CLONALG, particularly, have crucial parameters that control the algo-
rithm exploration capacity: (i) the antibody population size; (ii) the number
of clones; (iii) the remainder replacement size; and (iv) the stopping criterion.
Understanding the effects of each parameter is crucial for a proper understanding
of the algorithm as well as for its refinement. The impact that causes changing
the setting of each parameter is summarized in Table 1, as presented in [1].

Table 1. CLONALG parameters

Operator Function

Antibody population
size, Ninitial

If excessive, an overloaded number of redundant antibodies
can be generated

Number of clones, nC Excessive number of clones may lead to redundancy in the
search process, while a few number of clones may cause
ineffective results in the search for a favorable mutation

Remainder
replacement size, b

An excessive addition of antibodies reduces the
convergence speed but provides a higher search space
exploration; on the other hand, adding few antibodies may
impair the search for a global optimum

Stopping criterion,
maxIt

A great number of iterations impacts the execution time.
On the other hand, few iterations may lead to poor
performance of the algorithm

4 Experiments and Results

In this section, some numerical experiments are considered to check the perfor-
mance of the proposed CLONALG algorithm to solve the USApHMP. For the
sake of examination, the AP dataset is used, its details are described in [12].
All computational experiments were performed on an Intel R© i7 7700HQ v4 at
2.8 GHz running the Arch Linux 4.19.4 operating system. The method has been
implemented as C application.

As previously mentioned in Sect. 3, the CLONALG parameters adjustment
is crucial for a proper performance of the method. Hence, they were defined
via a preliminary parameter-selection process, which comprised 10 trials of the
algorithm for each possible configuration of Ninitial ∈ {1, 3, 5, 7, 9}, nC ∈
{5, 10, 20, 30}, b ∈ {0.1, 0.3, 0.5, 0.7, 1} and maxIt ∈ {300, 500, 700, 1000, 1500}.
In order to minimize runtime and the final cost for each instance of the problem,
the trials were executed with two n, p representative scenarios of USApHMP.
For instances with “Small” size, those with n up to 50, trials were executed with
n = 10 and p = 5. For instances with “Large” size, those with n ranging from
100 to 200, trial configuration was such that n = 100 and p = 10. Parameters
that showed promising results regarding execution time and cost were chosen
and are displayed in Table 2. The algorithm stops if it global solution (when pre-
viously known) for that particular instance, if the best solution in the population
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remains without changes through 50 iterations for small instances and 200 for
large ones, or if maxIt iterations is achieved.

Table 2. CLONALG parameters

Parameter Small Large

Ninitial 3 7

nC 5 20

b 1 1

maxIt 300 1000

After setting each parameter values, we have run the algorithm 20 times, in
order to collect the information regarding its performance for solving the different
USApHMP instances. The quality of each solution is evaluated as a percentage
gap between the solution found by CLONALG and the solutions presented in
[3] and [17] using

Gap (Cost, CostBKS) = 100 ×
(

Cost − CostBKS

CostBKS

)
. (5)

In addition, runtime information has been used to compare the computational
burden of the aforementioned methods.

Following, results obtained for the set of instances are summarized in Table 3.
The first two columns, “n” and “p” indicate the number of nodes and hubs,
respectively. The following two columns “Cost(1)” and “Time(s)” give the best
solutions obtained by BRILS, the metaheuristic proposed by the authors in [3]
and which, to the best of our knowledge, provides the best average runtime found
in literature regarding the solution of the USApHMP using the AP dataset.
The optimal solutions are highlighted in bold, notice that the optimal solutions
reported in [3] match with the optimal solutions found by CPLEX solver. The
next two columns denoted by “Cost(2)” and “Time(s)” present the best solu-
tion and time reported by the GA method in [17]. This classic technique was
chosen for comparison because it is, like CLONALG method, a bio-inspired,
population-based, non-deterministic algorithm. Following, the next two columns
denoted by “Cost(3)” and “Time(s)” present the best solution and time obtained
when applying our proposed CLONALG algorithm. Finally, the last two columns
present the percentage gaps regarding the solutions found by CLONALG and
the solutions reported when using BRILS and the GA method, respectively.

By looking at the results presented, we can conclude that the proposed AIS
can operate efficiently for solving the presented problem in most of the instances
in a very competitive time, the average runtime when applying CLONALG is
7.21 s, which is about 52% of the average time consumed by its similar coun-
terpart, the population-based GA technique [17]. Furthermore, it follows that
CLONALG solutions outperform the results reported by the genetic method.
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Table 3. Solutions found by CLONALG for the AP instances

Instance BRILS [3] GA [17] CLONALG ’19 GAP

n p Cost(1) Time(s) Cost(2) Time(s) Cost(3) Time(s) Cost(3)-(1) Cost(3)-(2)

10 2 167493.08 0.00 167493.06 0.00 167493.065 0.00 0.00 0.00

3 136008.14 0.01 - - 136008.126 0.00 0.00 -

4 112396.08 0.01 112396.07 0.02 112396.068 0.00 0.00 0.00

5 91105.38 0.01 91105.37 0.03 91105.371 0.00 0.00 0.00

20 2 172816.69 0.02 172816.69 0.01 172816.690 0.00 0.00 0.00

3 151533.08 0.02 151533.08 0.02 151533.084 0.00 0.00 0.00

4 135624.88 0.03 135624.88 0.03 135624.884 0.00 0.00 0.00

5 123130.09 0.03 123130.09 0.06 123130.095 0.00 0.00 0.00

25 2 175541.98 0.03 175541.98 0.03 175541.978 0.00 0.00 0.00

3 155256.32 0.03 155256.32 0.04 155256.323 0.00 0.00 0.00

4 139197.17 0.03 139197.17 0.07 139197.169 0.00 0.00 0.00

5 123574.29 0.03 123574.29 0.03 123574.289 0.00 0.00 0.00

40 2 177471.68 0.04 177471.67 0.05 177471.674 0.00 0.00 0.00

3 158830.55 0.04 158830.54 0.09 158830.545 0.01 0.00 0.00

4 143968.88 0.05 143968.88 0.05 143968.876 0.01 0.00 0.00

5 134264.97 0.05 134264.97 0.18 134264.967 0.01 0.00 0.00

50 2 178484.29 0.05 178484.29 0.14 178484.286 0.01 0.00 0.00

3 158569.94 0.05 158569.93 0.13 158569.933 0.02 0.00 0.00

4 143378.05 0.08 143378.05 0.20 143378.046 0.03 0.00 0.00

5 132366.96 0.06 132366.95 0.23 132366.953 0.04 0.00 0.00

100 5 136984.7 0.88 136929.44 2.15 136929.44 0.42 −0.04 0.00

10 106469.57 0.50 106829.15 11.15 106469.57 4.01 0.00 −0.34

15 90534.79 0.46 90534.78 13.18 90533.52 7.97 0.00 0.00

20 80305.1 3.86 80471.84 34.36 80270.96 9.79 −0.04 −0.25

200 5 140062.65 1.08 140450.08 18.34 140062.65 15.68 0.00 −0.28

10 110147.66 0.39 110648.72 57.34 110147.66 29.84 0.00 −0.45

15 94695.79 0.87 95857.69 81.92 94495.06 59.18 −0.21 −1.42

20 85006.05 9.11 86069.21 151.20 85337.42 74.71 0.39 −0.85

Average 0.64 13.74 7.21

Moreover, from the results in Table 3, one can see that three solutions
obtained by CLONALG are better and only one case is worse than the respec-
tive ones obtained by BRILS [3]. In average terms, it can be concluded that
most of the best solutions obtained by GA and BRILS regarding large instances
(n = {100, 200}) are improved by CLONALG.

In order to better depict the CLONALG performance, Fig. 1 shows the fitness
behavior among the population through the generations. The figure was obtained
when running the algorithm for solving the problem with n = 50 nodes and p = 5
hubs. Observe that the method can provide in few iterations solutions with low
gap to the optimal value.
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Fig. 1. Simulation results for the network with n = 50 nodes and p = 5 hubs.

5 Concluding Remarks

In this work we have proposed an Artificial Immune System, the CLONALG
optimization algorithm, for solving the USApHMP. The most popular bench-
mark problem found in the literature, the AP dataset, was considered. A series
of tests were carried out, which highlighted in particular the performance of the
CLONALG algorithm in the 28 instances that were evaluated. The overall results
indicated that the method could outperform its counterpart, the population-
based GA metaheuristic, both in terms of quality of solutions and time perfor-
mance. Furthermore, the algorithm could obtain better solutions than the fast
metaheuristic BRILS in 3 out of 4 large instances.

One can conclude that the findings presented in this work add to a growing
body of literature on the USApHMP, as they reinforce the effectiveness of AIS
as global optimization technique and indicate potential applications of the same
method to variations of the USApHMP, where situations with capacity con-
straints, multiple hub allocation or undefined number of hubs might yield opti-
mization spaces with multiple optima, which positively accounts for the intrinsic
population diversity capability of AIS methods.

There are several perspectives for future studies, such as the extension of the
experiments for scenarios with more nodes and hubs and a sensitivity analysis
of CLONALG with respect to its parameters, which unfortunately were not
possible to perform in time for this work. Additionally, studying the potential
association between BRILS and CLONALG in order to achieve high quality and,
simultaneously, low runtime solutions can lead to interesting new results.
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